Cultivation of human embryonic stem cells without the embryoid body step enhances osteogenesis in vitro.
نویسندگان
چکیده
Osteogenic cultures of embryonic stem cells (ESCs) are predominately derived from three-dimensional cell spheroids called embryoid bodies (EBs). An alternative method that has been attempted and merits further attention avoids EBs through the immediate separation of ESC colonies into single cells. However, this method has not been well characterized and the effect of omitting the EB step is unknown. Herein, we report that culturing human embryonic stem cells (hESCs) without the EB stage leads to a sevenfold greater number of osteogenic cells and to spontaneous bone nodule formation after 10-12 days. In contrast, when hESCs were differentiated as EBs for 5 days followed by plating of single cells, bone nodules formed after 4 weeks only in the presence of dexamethasone. Furthermore, regardless of the inclusion of EBs, bone matrix formed, including cement line matrix and mineralized collagen, which displayed apatitic mineral (PO4) with calcium-to-phosphorous ratios similar to those of hydroxyapatite and human bone. Together these results demonstrate that culturing hESCs without an EB step can be used to derive large quantities of functional osteogenic cells for bone tissue engineering.
منابع مشابه
Differentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملMatrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells
Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...
متن کاملComparison of Germ Cell Gene Expressions in Spontaneous Monolayer versus Embryoid Body Differentiation of Mouse Embryonic Stem Cells toward Germ Cells
Objective Genetic and morphologic similarities between mouse embryonic stem cell (ESCs) and Primordial Germ Cell (PGCs) make it difficult to distinguish the two cell types in in vitro differentiation. Using the expression of specific markers of germ cells that are not expressed or expressed at low levels in ESCs, can help recognizing in vitro differentiated cells MaterialsAndMethods In this stu...
متن کاملComparison of Cell Viability and Embryoid Body Size of Two Embryonic Stem Cell Lines After Different Exposure Times to Bone Morphogenetic Protein 4
Background: Activation of bone morphogenetic protein 4 (BMP4) signaling pathway in embryonic stem (ES) cells plays an important role in controlling cell proliferation, differentiation, and apoptosis. Adverse effects of BMP4 occur in a time dependent manner; however, little is known about the effect of different time exposure of this growth factor on cell number in culture media. In this study, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stem cells
دوره 24 4 شماره
صفحات -
تاریخ انتشار 2006